The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.
translated by 谷歌翻译
对异常域特定视频集的有效分析是一个重要的实践问题,在该问题中,最新的通用模型仍面临局限性。因此,希望设计基准数据集,以挑战具有其他约束的特定领域的新型强大模型。重要的是要记住,特定域的数据可能更嘈杂(例如,内窥镜或水下视频),并且通常需要更多经验丰富的用户才能有效搜索。在本文中,我们专注于从水下环境中移动相机拍摄的单次视频,这构成了研究目的的非平凡挑战。提出了新的海洋视频套件数据集的第一个碎片,用于用于视频检索和其他计算机视觉挑战。除了基本的元数据统计数据外,我们还基于低级特征以及所选密钥帧的语义注释提供了几个见解和参考图。该分析还包含实验,显示了检索受人尊敬的通用模型的局限性。
translated by 谷歌翻译
建筑摄影是一种摄影类型,重点是捕获前景中带有戏剧性照明的建筑物或结构。受图像到图像翻译方法的成功启发,我们旨在为建筑照片执行风格转移。但是,建筑摄影中的特殊构图对这类照片中的样式转移构成了巨大挑战。现有的神经风格转移方法将建筑图像视为单个实体,它将产生与原始建筑的几何特征,产生不切实际的照明,错误的颜色演绎以及可视化伪影,例如幽灵,外观失真或颜色不匹配。在本文中,我们专门针对建筑摄影的神经风格转移方法。我们的方法解决了两个分支神经网络中建筑照片中前景和背景的组成,该神经网络分别考虑了前景和背景的样式转移。我们的方法包括一个分割模块,基于学习的图像到图像翻译模块和图像混合优化模块。我们使用了一天中不同的魔术时代捕获的不受限制的户外建筑照片的新数据集培训了图像到图像的翻译神经网络,利用其他语义信息,以更好地匹配和几何形状保存。我们的实验表明,我们的方法可以在前景和背景上产生逼真的照明和颜色演绎,并且在定量和定性上都优于一般图像到图像转换和任意样式转移基线。我们的代码和数据可在https://github.com/hkust-vgd/architectural_style_transfer上获得。
translated by 谷歌翻译
来自3D点云的对象重建在计算机视觉和计算机图形研究字段中取得了令人印象深刻的进展。但是,通常会忽略时间变化点云(又称4D点云)的重建。在本文中,我们提出了一种新的网络体系结构,即RFNET-4D,它共同重建对象及其运动从4D点云中流动。关键见解是,通过一系列点云的学习空间和时间特征同时执行这两个任务可以利用单个任务,从而改善了整体性能。为了证明这种能力,我们使用无监督的学习方法来设计一个时间矢量场学习模块,以进行流程估计,并通过监督对物体重建的空间结构的监督学习来利用。基准数据集的广泛实验和分析验证了我们方法的有效性和效率。如实验结果所示,我们的方法在流动估计和对象重建方面都达到了最先进的性能,同时执行训练和推理中的现有方法要快得多。我们的代码和数据可从https://github.com/hkust-vgd/rfnet-4d获得
translated by 谷歌翻译
Knowledge representation and reasoning in law are essential to facilitate the automation of legal analysis and decision-making tasks. In this paper, we propose a new approach based on legal science, specifically legal taxonomy, for representing and reasoning with legal documents. Our approach interprets the regulations in legal documents as binary trees, which facilitates legal reasoning systems to make decisions and resolve logical contradictions. The advantages of this approach are twofold. First, legal reasoning can be performed on the basis of the binary tree representation of the regulations. Second, the binary tree representation of the regulations is more understandable than the existing sentence-based representations. We provide an example of how our approach can be used to interpret the regulations in a legal document.
translated by 谷歌翻译
Domain adaptation has been vastly investigated in computer vision but still requires access to target images at train time, which might be intractable in some conditions, especially for long-tail samples. In this paper, we propose the task of `Prompt-driven Zero-shot Domain Adaptation', where we adapt a model trained on a source domain using only a general textual description of the target domain, i.e., a prompt. First, we leverage a pretrained contrastive vision-language model (CLIP) to optimize affine transformations of source features, bringing them closer to target text embeddings, while preserving their content and semantics. Second, we show that augmented features can be used to perform zero-shot domain adaptation for semantic segmentation. Experiments demonstrate that our method significantly outperforms CLIP-based style transfer baselines on several datasets for the downstream task at hand. Our prompt-driven approach even outperforms one-shot unsupervised domain adaptation on some datasets, and gives comparable results on others. The code is available at https://github.com/astra-vision/PODA.
translated by 谷歌翻译
This paper presents the development of an AI-based language learning platform Revita. It is a freely available intelligent online tutor, developed to support learners of multiple languages, from low-intermediate to advanced levels. It has been in pilot use by hundreds of students at several universities, whose feedback and needs are shaping the development. One of the main emerging features of Revita is the introduction of a system of linguistic constructs as the representation of domain knowledge. The system of constructs is developed in close collaboration with experts in language teaching. Constructs define the types of exercises, the content of the feedback, and enable the detailed modeling and evaluation of learning progress.
translated by 谷歌翻译
Temporal Graph Neural Network (TGNN) has been receiving a lot of attention recently due to its capability in modeling time-evolving graph-related tasks. Similar to Graph Neural Networks, it is also non-trivial to interpret predictions made by a TGNN due to its black-box nature. A major approach tackling this problems in GNNs is by analyzing the model' responses on some perturbations of the model's inputs, called perturbation-based explanation methods. While these methods are convenient and flexible since they do not need internal access to the model, does this lack of internal access prevent them from revealing some important information of the predictions? Motivated by that question, this work studies the limit of some classes of perturbation-based explanation methods. Particularly, by constructing some specific instances of TGNNs, we show (i) node-perturbation cannot reliably identify the paths carrying out the prediction, (ii) edge-perturbation is not reliable in determining all nodes contributing to the prediction and (iii) perturbing both nodes and edges does not reliably help us identify the graph's components carrying out the temporal aggregation in TGNNs.
translated by 谷歌翻译
Neural approaches have become very popular in the domain of Question Answering, however they require a large amount of annotated data. Furthermore, they often yield very good performance but only in the domain they were trained on. In this work we propose a novel approach that combines data augmentation via question-answer generation with Active Learning to improve performance in low resource settings, where the target domains are diverse in terms of difficulty and similarity to the source domain. We also investigate Active Learning for question answering in different stages, overall reducing the annotation effort of humans. For this purpose, we consider target domains in realistic settings, with an extremely low amount of annotated samples but with many unlabeled documents, which we assume can be obtained with little effort. Additionally, we assume sufficient amount of labeled data from the source domain is available. We perform extensive experiments to find the best setup for incorporating domain experts. Our findings show that our novel approach, where humans are incorporated as early as possible in the process, boosts performance in the low-resource, domain-specific setting, allowing for low-labeling-effort question answering systems in new, specialized domains. They further demonstrate how human annotation affects the performance of QA depending on the stage it is performed.
translated by 谷歌翻译
This paper presents a two-step algorithm for online trajectory planning in indoor environments with unknown obstacles. In the first step, sampling-based path planning techniques such as the optimal Rapidly exploring Random Tree (RRT*) algorithm and the Line-of-Sight (LOS) algorithm are employed to generate a collision-free path consisting of multiple waypoints. Then, in the second step, constrained quadratic programming is utilized to compute a smooth trajectory that passes through all computed waypoints. The main contribution of this work is the development of a flexible trajectory planning framework that can detect changes in the environment, such as new obstacles, and compute alternative trajectories in real time. The proposed algorithm actively considers all changes in the environment and performs the replanning process only on waypoints that are occupied by new obstacles. This helps to reduce the computation time and realize the proposed approach in real time. The feasibility of the proposed algorithm is evaluated using the Intel Aero Ready-to-Fly (RTF) quadcopter in simulation and in a real-world experiment.
translated by 谷歌翻译